Вручив властям доклад Группы Орбиты, я вернулся к мыслям о самой «легкой» области физики, т. е. к ядерным спинам; в частности, к задаче, которой суждено было меня занимать в течение немалой части моей жизни: ядерная поляризация и ее применения.
Если методы ЯМР позволяют сегодня «видеть человека насквозь», то прежде всего потому, что под влиянием магнитного поля пациент, введенный в широкий зазор томографического магнита (как и любой образец в любом магните), приобретает так называемую ядерную поляризацию, т. е. избыток ядерных магнитных моментов, направленных вдоль магнитного поля по сравнению с теми, которые направлены ему навстречу. (Поляризация равна единице, когда все спины параллельны полю.)
Ядерная поляризация зависит от абсолютной температуры образца: чем выше температура, тем эффективнее беспорядочное тепловое движение противится действию магнитного поля, которое старается выстроить все ядерные магнитные моменты параллельно себе. При полях, встречающихся в лабораториях ЯМР, при комнатной температуре образец, например наш пациент, будет обладать протонной поляризацией не выше нескольких миллионных долей. Но для подавляющего большинства применений ЯМР этого вполне достаточно.
Но есть в физике задачи, которые требуют ядерной поляризации гораздо большей: например, излучение радиоактивных ядер. Выше говорилось об угловых ядерных корреляциях: испускание первой частицы создает привилегированное направление, по отношению к которому угловое распределение второй частицы обладает анизотропией, из которой можно извлечь полезную информацию. Но физикам-ядерщикам иногда желательно создать анизотропию прямым путем, не прибегая к угловым корреляциям, что может быть достигнуто благодаря высокой поляризации спинов радиоактивных ядер.
Подход к этой задаче возможен с двух концов: понижением температуры и повышением поля. И в обоих направлениях надо пройти довольно далеко, если желательна поляризация порядка единицы. Чтобы перейти от поляризации в несколько миллионных долей до, скажем, нескольких процентов, можно, например, понизить температуру от комнатной до 1 К и повысить поле от 1 до 100 Тл. В 1954 году, о котором сейчас идет речь, первое легко достигалось откачкой паров жидкого гелия, но второе не достигнуто и до сих пор. Поэтому в 1948 году голландцем Гортером и американцем Роузом (Rose) был (независимо друг от друга) предложен иной способ. Использовалось очень высокое сверхтонкое поле, создаваемое магнитными электронами парамагнитного атома в том месте, где находится ядро. Остроумное изменение этого метода, предложенное Блини в 1951 году, вскоре сделало возможным первое наблюдение в Оксфорде анизотропного излучения радиоактивного кобальта. Меня терзало то, что не был в Оксфорде, когда там производились исследования, столь близкие моим собственным интересам.