Окончив университет в 1929 году и освободившись тем самым от экзаменов, так как в аспирантуре их не было, я все свои силы направил на научную работу, которую сразу же повёл с очень большим успехом. Каждый год я публиковал по две-три работы, причём по меньшей мере одна из них была действительно замечательной. В первые годы тематика этих работ была тесно связана с моими студенческими работами или вытекала из них. При этом иногда, исходя из старых задач, я приходил к совершенно новым.
Стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства, я пришёл к необходимости рассмотрения группы характеров произвольной коммутативной счётной группы, т.е. столкнулся с T-теорией топологических групп, с топологической алгеброй. В дальнейшем это привело меня к построению общей теории топологических групп.
Я пришёл к топологической алгебре, стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства. Не знаю, как пришёл к ней А. Н. Колмогоров, но он сформулировал мне следующее общее положение: «Математический объект, в котором одновременно определены алгебраические и топологические операции, причём алгебраические операции непрерывны в заданной в нём топологии, должен быть сравнительно конкретным». На этом пути Колмогоров пытался построить аксиоматику пространств постоянной кривизны, т.е. единую аксиоматику для пространства Евклида, Лобачевского и Римана.
Передо мной он поставил следующую конкретную задачу: доказать, что всякое связное локально компактное топологическое тело является либо телом действительных чисел, либо телом комплексных чисел, либо телом кватернионов. Для коммутативных тел, т.е. полей, я решил её очень быстро — за неделю или две. И сообщил об этом П. С. Александрову. И вот мы трое собрались в маленькой комнате Павла Сергеевича в Старопименовском переулке. Колмогоров с оттенком иронии сказал: «Ну что же, Лев Семёнович, я слышал, вы решили мою задачу? — Расскажите!» Я начал рассказ, и первое же моё утверждение Колмогоров объявил неверным. Но я в нескольких словах объяснил ему его ошибку. Колмогоров сказал: «Да, да, вы правы! По-видимому, задача, которую я вам поставил, не так трудна, как я думал».
Потом я решил задачу и для случая некоммутативных тел, но это заняло у меня уже около года. Колмогоров тщательно отредактировал эту мою работу и устроил в ней 33 леммы. В таком виде она и была опубликована. Я и сейчас считаю этот мой результат в числе лучших моих достижений[1].
С Колмогоровым я познакомился летом 1929 года в Гаграх, где мы с матерью провели целых два месяца. Я часто встречался там с Александровым и Колмогоровым, Во всяком случае, мы очень часто купались вместе. Александров и Колмогоров приехали в Гагры не одновременно. Сперва приехал Александров и стал ждать Колмогорова, который шёл через перевал, притом совершенно один, что очень беспокоило Александрова и меня. Беспокойство это переросло в мучительную тревогу, когда Колмогоров не явился к назначенному сроку.
Александров за несколько лет до этого потерял своего друга, Урысона, при трагических обстоятельствах. Урысон утонул в Атлантическом океане во время сильного прибоя на глазах у Александрова. В Гаграх Александрову чудилась гибель только что обретённого нового друга. Колмогоров опоздал на несколько дней. Оказалось, что при переходе через перевал он уронил сумку с документами в пропасть и не мог её достать. Когда он ночью спустился в Сочи, то женщина-милиционер задержала его как подозрительную личность и отправила в дом предварительного заключения, где он просидел четыре или пять дней, тщетно добиваясь, чтобы его выпустили или навели о нём справки. Наконец это удалось сделать, и тогда ему была возвращена свобода.