автори

1570
 

записи

220391
Регистрация Забравена парола?
Memuarist » Members » Stanislaw_Ulam » Детство (1909-1927) - 8

Детство (1909-1927) - 8

01.03.1920
Львов, Львовская, Украина

Я заинтересовался математикой в довольно раннем возрасте. В библиотеке отца имелась замечательная серия книг на немецком языке под названием «Reklam». В нее входила «Алгебра» Эйлера. Я часто листал ее страницы, и книга эта внушала мне чувство некой таинственности. Все символы казались мне, десятилетнему мальчишке, магическими знаками, и я очень хотел знать, смогу ли когда-нибудь понять их. Вполне возможно, что это способствовало дальнейшему развитию моей любознательности. Например, я сам научился решать квадратные уравнения. Я отдавался этому занятию с невероятной сосредоточенностью и каким-то болезненным, не вполне осознанным напряжением. То, что я делал, было равносильно мысленному возведению в квадрат какого-либо числа без бумаги и карандаша.

В старших классах очередным стимулом для меня стала задача о существовании совершенных нечетных чисел. Как известно, целое число называют совершенным, если оно равно сумме всех своих делителей, включая единицу, кроме делителя, равного данному числу. Так, числа 6 = 1 + 2 + 3 и 28 = 2 + 4 + 7 + 14 являются совершенными. Вы спросите: бывают ли нечетные совершенные числа? К сожалению, вопрос об их существовании остается открытым до сих пор.

Школьные уроки математики меня по большей части не удовлетворяли. Я считал их скучными, и у меня совсем не лежала душа к заучиванию определенных формальных операций. Поэтому мне больше нравилось изучать математику самостоятельно.

Где-то в пятнадцать лет мне попался трактат по исчислению бесконечно малых величин, написанный Герхардтом Ковалевским. Мои знания аналитической геометрии и тригонометрии были слишком малы, однако идея пределов, определения вещественных чисел, понятия производных и интегрирования заинтриговали меня, захватили целиком. Тогда я принял решение ежедневно читать одну или две странички из этой книги и попытаться узнать необходимые факты по тригонометрии и аналитической геометрии из других книг.

Еще две книги я купил в комиссионном магазине. Могу с уверенностью сказать, что не помню, чтобы какая-то другая из прочитанных мною впоследствии книг заворожила бы меня так сильно, как эти две, написанные Серпинским — «Теория множеств» и монография по теории чисел. В результате в семнадцать лет я знал о теории элементарных чисел столько же, а быть может, и больше, чем знаю сейчас.

Я прочитал также книгу Гуго Штейнгауза «Что является и что не является математикой» («What Is and What Is Not Mathematics») и замечательные работы Пуанкаре «Наука и гипотеза» («La Science et la Hypothèse»), «Наука и метод» («La Science et la Mèthode»), «Ценность науки»(«La Valeur de la Science») и «Последние мысли» («Dernieres Pensees») в польском переводе. Их язык, не говоря уже о научной ценности, приводил меня в восхищение. Я должен сказать, что Пуанкаре, несомненно, повлиял на формирование моего научного мышления. Если прочесть одну из его книг сегодня, то сразу увидишь, как много замечательных истин науки прошлого остается важным для науки настоящего, несмотря на то, сколь потрясающие произошли за это время перемены и в математике, и, тем более, в физике. Я восхищался и Штейнгаузом, рассмотревшим в своей книге множество истинно математических задач.

10.07.2025 в 16:00


Присоединяйтесь к нам в соцсетях
anticopiright Свободное копирование
Любое использование материалов данного сайта приветствуется. Наши источники - общедоступные ресурсы, а также семейные архивы авторов. Мы считаем, что эти сведения должны быть свободными для чтения и распространения без ограничений. Это честная история от очевидцев, которую надо знать, сохранять и передавать следующим поколениям.
© 2011-2025, Memuarist.com
Юридическа информация
Условия за реклама