authors

1484
 

events

204190
Registration Forgot your password?
Memuarist » Members » Lev_Pontryagin » После университета - 4

После университета - 4

01.05.1931
Москва, Московская, Россия

Третьим ответвлением от моих студенческих работ стало вариационное исчисление «в целом», которым занимались тогда Люстерник и Шнирельман. Они ввели важное для вариационного исчисления понятие «категория многообразия». Данное ими определение категории отрицательно. Это значит, что эффективно можно установить, что категория не больше некоторого числа k, но нет никакой возможности эффективно установить, что она не меньше числа k. Поэтому вычисление её очень трудно. Мои студенческие результаты дали возможность оценивать категорию многообразия снизу при помощи пересечений циклов многообразия[1].

Так у меня возникли научные контакты с Л. А. Люстерником и Л. Г. Шнирельманом. Оба они в течение многих лет были моими друзьями.

Очень хорошо помню, как я впервые встретился со Шнирельманом. Я пришёл на топологический кружок — т.е. главный топологический семинар — с опозданием и услышал, что какая-то женщина делает доклад. Стал его внимательно слушать. Когда доклад кончился, оказалось, что это была не женщина, а Лев Генрихович Шнирельман, обладающий совершенно женским голосом. Мы со Шнирельманом быстро сблизились и подружились. Часто бывали друг у друга. Он жил тогда в дрянной обшарпанной комнатке, а я — в своей старой плохонькой квартире. Шнирельман много рассказывал мне о математиках более старшего, чем я, поколения: о Лузине, Лихтенбауме и других[2]. С ним мы читали стихи русских поэтов. Он привлёк моё внимание к таким замечательным литературным произведениям, как «Валерик» Лермонтова.

Шнирельман был незаурядный, талантливый человек с большими странностями. Было в нём что-то неполноценное, какой-то психический сдвиг. Я помню, как трудно было ему уйти от меня из гостей: он останавливался в прихожей и не мог двинуться дальше. Тогда говорили, он не имел никаких успехов у женщин и это сильно угнетало его. Кроме того, с ним произошло большое несчастье в смысле научного творчества. Он сделал выдающееся научное открытие, дав первое приближение к решению теоретико-числовой проблемы Гольдбаха[3]. Этот успех грубо исказил его отношение к математической проблематике.

Ему принадлежала следующая формулировка: «Я не хочу заниматься промыванием золота, я хочу находить только самородки». Ясно, однако, что найти самородок можно, только промывая золото и подбираясь к самородку постепенно.

Он отказался от этого пути и утратил творческую инициативу. Когда это произошло, он впал в полное уныние и говорил часто мне: «Имеет ли право жить человек, который уже ничего не делает, а в прошлом сделал что-то замечательное?» Я утешал его как мог. Кончилось это трагически: Шнирельман преднамеренно отравился. Я помню, как Люстерник встретил меня на вокзале, когда мы с матерью возвращались с юга, и сообщил о происшедшем несчастье.

В то время Шнирельман жил уже в хорошей квартире вместе с матерью. Она видела, что с ним происходит что-то неблагополучное, и следила за ним. Однажды ночью она была чем-то очень встревожена и хотела даже посмотреть, что с сыном. Но, подумав, что он спит, не решилась пойти к нему. Утром обнаружила, что он закрылся в кухне, заложил все щели и пустил газ. Когда она обнаружила его, он уже был безнадежно мёртв, хотя ещё и не остыл... Так трагически кончилась жизнь Льва Генриховича Шнирельмана.



[1] См. работу «Об алгебраическом содержании топологических теорем двойственности» (в кн.: Понтрягин Л. С.  Избранные научные труды. Т. I. — М.: Haука, 1988) и её обсуждение в статье «О моих работах по топологии и топологической алгебре» (с. 243–260 наст. издания).

 

[2] По-видимому в это время была опубликована «Декларация инициативной группы по реорганизации математического общества», подписанная Люстерником, Шнирельманом, Гельфондом, Понтрягиным и Некрасовым.

 

[3] Проблема Гольдбаха формулируется следующим образом: всякое ли целое число, большее 6, можно представить в виде суммы не более трёх простых чисел? Л. Эйлер показал, что для решения этой проблемы достаточно доказать, что каждое чётное число есть сумма двух простых. В 1930 г. Л. Г. Шнирельман доказал, что всякое целое число, большее 1, есть сумма не более чем 800 000 простых чисел.

 

06.02.2020 в 10:00

Присоединяйтесь к нам в соцсетях
anticopiright Свободное копирование
Любое использование материалов данного сайта приветствуется. Наши источники - общедоступные ресурсы, а также семейные архивы авторов. Мы считаем, что эти сведения должны быть свободными для чтения и распространения без ограничений. Это честная история от очевидцев, которую надо знать, сохранять и передавать следующим поколениям.
© 2011-2024, Memuarist.com
Idea by Nick Gripishin (rus)
Legal information
Terms of Advertising
We are in socials: